F(x)=x^2+16x-22

Simple and best practice solution for F(x)=x^2+16x-22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=x^2+16x-22 equation:



(F)=F^2+16F-22
We move all terms to the left:
(F)-(F^2+16F-22)=0
We get rid of parentheses
-F^2+F-16F+22=0
We add all the numbers together, and all the variables
-1F^2-15F+22=0
a = -1; b = -15; c = +22;
Δ = b2-4ac
Δ = -152-4·(-1)·22
Δ = 313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{313}}{2*-1}=\frac{15-\sqrt{313}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{313}}{2*-1}=\frac{15+\sqrt{313}}{-2} $

See similar equations:

| 3/5x+1/x=2 | | 5/m+2/m=1/2 | | 5x+48=3•x | | 5x+48=3x | | (9x)(8x)=18 | | 4x-2x+3=2x+2x=x | | 3(3x-4)=45 | | P=4+3(n-1) | | 15x=10+15x | | P=1+3n | | P=n+n+n+1 | | 9(4^x)=126 | | 5+3n=1-n | | 3x^2–x–2=0 | | X(x-16)=-63 | | 18x2+18=39x | | 167+11x=180 | | -9+n÷4=-1 | | 5/x=18/90 | | -1=-9+n÷4 | | 15/20=24/n | | 8n-10=38 | | 5(2n-8)-3n=-82 | | 7(u-5)=-3u-45 | | 8(8-6n)=400 | | 2x+6×48=900 | | 5u-32=7(u-6) | | 3(x-9)=9x+33 | | -5(5+4b)=135 | | 8w+5(w-3)=37 | | 9+6r=-87 | | 8w+6(w-3)=37 |

Equations solver categories